
Genetic Programming: Computers That Program
Themselves

Robin Stewart
CSCI 373: Artificial Intelligence

May 18, 2004

1 Introduction

One goal of artificial intelligence research is to create computers that can program them-
selves. Genetic Programming is a method of automatically generating computer programs
through a process analogous to biological natural selection. Through a series of generations,
programs are “evolved” to solve a given problem, increasingly with human-competitive re-
sults [KBIAM96]. In this paper we start with a discussion of how genetic programming works
and what the major issues are. We will then analyze several areas of current research aimed
at improving the results of genetic programming. Finally, we will consider the potential of
this technique in generating new knowledge.

2 Elements of Genetic Programming

The idea of immitating evolution in computers (more broadly referred to as Genetic Al-
gorithms) was first concretely proposed in the 1970’s by Holland as a type of search algo-
rithm [Hol76]. The algorithm essentially works by maintaining a population of potential
solutions to the problem at hand. In each iteration or generation, every potential solution is
evaluated to determine how well it at solves the problem. The best individuals are picked out
and are either “sexually recombined” by swapping parts of the strings, or taken unaltered
to form the population of the next generation. The algorithm stops after a predetermined
number of generations or when a suitable solution has been found [KKS+03].

Koza launched the field of genetic programming by extending genetic algorithms to handle
functional computer programs represented as tree structures [Koz92]. Each function call
forms an internal node of the tree, while numeric values and variables are represented as
leaf nodes. For example, Figure 1 depicts a functional program that calculates x2 + 5. The
multiplication and addition operators form internal nodes, and the variable x and constant
5 are leaves.

In genetic programming, the solutions being evolved and evaluated are functional program
trees. Consequently, in order to pose a problem in suitable form one must determine the
following problem-specific elements [KKS+03]:

1



x x

5*

+

Figure 1: A program tree representing the calculation x2 + 5.

1. Terminal Set. The set of possible leaf nodes for the problem. In the x2+5 problem, the
terminal nodes obviously end up being x and 5. But before the problem was solved,
we may not have known that the solution would need 5 as opposed to some other
constant, so our starting terminal set might be the set of integers between 1 and 10.

2. Function Set. The set of all possible functions that can be used. For instance, we might
allow the mathematical operators +, -, *, and / (once again, we don’t necessarily know
which ones will be useful for the solution).

3. Fitness Measure. Evaluation begins by running each program and comparing the
output with the desired output. In our example above, one way of calculating fitness is
by averaging the error between the program’s output and the desired output for many
values of the variable x. Evaluating the fitness of a program can be a computationally
intensive step, so finding heuristics that can speed up evaluation is always beneficial.
Unfortunately, that is not always possible.

4. Control Parameters. These are a collection of parameters that affect the basic oper-
ation of the algorithm. They include the population size, the maximum number of
generations, the number of “survivors” selected for the next generation, and so on.
These parameters don’t affect the solution population directly, but their values can af-
fect global properties like the number of generations needed before a solution is found.

5. Termination Criterion. Finally, we need a way to signal for the algorithm to stop.
This could be after a certain number of generations as mentioned above, or when a
program surpasses a threshold fitness level.

The algorithm itself uses those elements to proceed as follows [PSV04]:

1. Initialize the space by randomly creating a population of program trees.

2. Select a subset of programs in the population, probabilistically favoring those with
higher fitness. There are several ways to go about this:

(a) Perhaps the simplest way is to just take a certain percentage off the top of the
most-fit individuals. The serious drawback of this strategy is that some programs

2



which initially would not be in this top group (and would therefore be elimi-
nated) might have the potential to do much better in later generations. Thus, a
probabilistic method is desirable.

(b) In fitness-proportional selection, a program i with fitness fi has a probability of
being selected based on its fitness relative to the rest of the population of size n:

Prob(i) =
fi∑n

j=1 fj

.

(c) The problem with any fitness-proportional selection technique is that they are
affected by every quirk of the fitness evaluation function – for instance, programs
that score unreasonably well have a disproportionate chance of getting selected.
To remedy this situation, rank-based selection ranks the individuals in order of
fitness and bases the probability of selection on that rank, not the raw fitness
score. Thus it uses the same formula as above, using modified fitness f ′

i :

f ′
i = Max− (Max−Min)

i− 1

n− 1
.

where Max and Min define some arbitrary ranking scale.

3. The last step is to transform the chosen individuals to produce “offspring” programs
for the next generation. The basic possibilities are:

(a) Reproduction, which leaves the candidate program unchanged.

(b) Crossover, which swaps a subtree in one program with a subtree in another. In
some cases care must be taken that the swapped functions return the same type
of value (e.g., boolean or continuous).

(c) Mutation, which randomly alters part of a program (discussed further below).

4. Repeat with the new, transformed population until a termination state is reached.

3 Architecture-Altering Operations

A severe limitation of the basic genetic programming discussed so far is its inability to
create structures like subroutines and loops which are crucial components of human-created
programs. Fortunately, functional programs (programs representable as a tree structure)
can handle such components, as demonstrated by LISP constructs like defun and do. The
set of transformations that can create, modify and delete these structures during a genetic
programming run are called architecture-altering operations [KIAK99]. They are all variants
of mutation because the “decision” to use one is random; they differ from basic mutations
in that they alter the underlying architecture of the program instead of simply modifying
function and argument calls.

Subroutine creation allows a programmer to reuse the same code for different purposes
instead of having to re-create it in each instance (a particularly arduous process when the

3



x x

5*

+

defun

arguments

ARG0 ARG1

Func1 value

*

+

ARG1

ARG0 ARG0

Figure 2: The old x2+5 calculation can be generalized into a function node using architecture-
altering operations.

duplicate code has to be evolved through natural selection). In genetic programming this is
done with function-defining nodes (Figure 2). Each one has three branches: a function name,
a list of arguments (which can be empty), and a subtree determining what calculation the
function should perform. There are six architecture-altering operations that correspond to
subroutines: creating, duplicating, and deleting subroutines; and creating, duplicating, and
deleting arguments to a subroutine. Duplication provides the essential feature by allowing a
subroutine to be used more than once [KIAK99].

It is also possible to implement loops and memory storage/access in a similarly automatic
fashion. The details of designing architecture-altering operations to implement these con-
structs are so complicated that at first glance it hardly seems possible. In particular, these
structures bring with them the unfortunate possibility of infinite (or simply time-consuming)
loops, so the genetic programming system must be capable of filtering them out. The sim-
plest way of doing so is to limit the amount of computer time or memory space allocated
to evaluating each program in a population. If the program is still working on the problem
when time runs out, it will be penalized accordingly when the next generation is selected.
Despite the seemingly messy details, Koza et al. [KIAK99, KKS+03] and others have been
remarkably successful in designing these operations.

4 Controlling Bloat

One problem that crops up in genetic programming runs is the tendency of evolved code to
continually increase in size. This not only makes program evaluation more computationally
intense but also produces problem solutions that are much longer than necessary. This
phenomenon of bloat occurs for at least three reasons [Pol03]:

1. Replication accuracy. Having large chunks of effectively inactive code (code that does
not affect the program’s actual output) increases the probability that a program will re-

4



main functional even when modified by crossovers and mutations. Thus such programs
tend to survive well in the population, especially in later generations.

2. Removal bias. On average, inactive code resides in lower parts of a program tree than
active code, and thus inactive subtrees tend to be smaller than active ones. In the
crossover operation, programs that have an inactive subtree switched out usually do
better than programs with an active subtree switched out. Because of the average size
difference between these subtrees, the successful programs tend to get bigger.

3. Program search space. Towards the end of genetic programming runs, program size
does not correlate well with program fitness; that is, programs of many different sizes
perform equally well. Since there are combinatorially more bigger programs than
smaller programs, the probability is that more bigger programs will be selected.

Several ways of addressing this issue have been proposed, many of which are analogous
to the issues of limiting the potentially infinite running time and memory requirements of
candidate programs. The simplest technique is to set a program length (or program tree
depth) cutoff: any program that is too long is not allowed to proceed to the next generation.
A practical objection to this method is that the size of the cutoff must be determined in
advance by the human question poser. Even more worrisome is the fact that programs have
a better chance of moving to the next generation if they are very close to the cutoff because
their offspring are likely to be discarded due to length (forcing the algorithm to use the
parent instead) [Pol03].

Another possibility, the parsimony pressure method, decreases the fitness score of a pro-
gram as its length increases. This way, an arbitrary cutoff is avoided but longer programs
are less likely to get selected for the next generation. There are many variations on this
general idea. One promising approach called the Tarpeian method chooses some subset of
programs, probabilistically favoring longer programs over shorter ones. This subset is then
discarded before creating the next generation. It can be proven in many cases that if the
average fitness of the discarded set is better than that of the full set, the average program
size in the next generation will increase; and otherwise it will decrease. Thus, the method
discourages formation of bigger programs if and only if they are no more fit than shorter
ones [Pol03].

5 Maintaining Diversity

Another aspect of the genetic programming population that can significantly affect results
is the diversity of the various programs in the population. Once again, the reasoning is
parallel to biological evolution – if the individuals in a population are highly similar, no
particularly exciting new offspring will be produced. Formulated as a search issue, a highly
similar population is in more danger of getting stuck at a local maximum. On the other
hand, too much diversity can also be detrimental because important, functioning features
will have a greater tendency to get lost.

The basic idea of diversity is easy to grasp, but looking deeper we find that there is not
even a consensus on how best to define the term. One way is to compare just the structure

5



of program trees while ignoring node labels. Thus, a program that computes x/5− y would
be considered the same as the program x2 + 5 (Figure 1) for the purposes of the diversity
measure (because the programs have the same structure). Another, completely different,
possibility is to define a “distance” measure based on the number of exact (including labels)
subtrees that two programs share. Still another possibility is to compare the output from
running two programs rather than looking at the programs themselves [BGK04].

Globally applicable methods of enhancing diversity should apply to all of these definitions.
The easiest solution is to simply increase the population size maintained in each generation.
The main problem with that is the sheer computational burden – every new individual will
have to be evaluated and transformed. However, the approach is extremely effective and has
continued to be possible due to the exponential growth in hardware speed over the past 30
years. Another compelling possibility is inspired by biological geographic diversity where the
separation between groups of individuals allows intra-group crossover to occur only rarely.
This option has the added benefit of working very well with distributed computing: a different
population can be maintained on each processor, while sharing and mixing populations
periodically [BGK04].

The amount of diversity that is desirable depends on the stage of evolution. When pop-
ulations are making a lot of progress towards a solution, that progress should be encouraged
and captured by letting it take over significant chunks of the population. Alternately, when
little progress is being made, it’s better to encourage diversity in the hopes that the pop-
ulation is resting at a local maximum. How can we accomplish this without introducing
complicated diversity calculations? Geographic diversity handles it nicely by allowing con-
vergence within separated groups but also periodically enforcing change by mixing groups.
Many other strategies are also being researched.

6 Conclusions

The use of architecture-altering operations in particular allows genetic programming to evolve
solutions to a wide variety of problems with a minimum amount of specification by the
human posing the question. As computational capacity increases, programs can be evolved
to perform increasingly complex tasks. Genetic programming clearly does not guarantee
that the solution it returns is optimal, but advances in controlling bloat and maintaining
diversity help to insure that the solutions found are as optimal as possible. There exist
logic-based automatic programming systems (e.g., [Ols95]) which in theory can return an
optimal solution, but in practice such a guarantee takes far too much computational time.
As a result, heuristics are added that guide the transformations of possible programs away
from dead ends.

But what makes genetic programming particularly exciting is its ability to constantly
make “leaps of faith” in generating new programs, rather than the incremental transforma-
tions used in logic-based systems). Crossover operations can generate new programs unlike
anything seen previously in the population. It can be argued that this is analogous to the
process of invention, which is usually based not just on logical reasoning but by making
connections that no one has made before [KKS+03].

Indeed, already genetic programming has achieved 36 results which Koza et al. [KKS+03]

6



define as “human-competitive,” meaning that the computer has either discovered a solution
that has been previously patented, a solution that performs similarly to a previous patent,
or a solution that qualifies as a newly patentable invention. The majority of these are
programs which are comprised of instructions for making analog electrical circuits. Many
circuit designs have been found that match the functionality of already-patented designs,
and Koza et al. [KKS+03] have now filed patents for two new circuits invented by their
supercomputer. With inevitable future increases in computing power, the breadth and ability
of genetic programming will only continue to increase.

References

[BGK04] E. K. Burke, S. Gustafson, and G. Kendall. Diversity in genetic programming:
An analysis of measures and correlation with fitness. IEEE Transactions on
Evolutionary Computation, 8(1):47–62, 2004.

[Hol76] J. H. Holland. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, MI, 1976.

[KBIAM96] J.R. Koza, F. H. Bennet II, D. Andre, and Keane M.A. Four problems for
which a computer program evolved by genetic programming is competitive with
human performance. In Proceedings of the 1996 IEEE International Conference
on Evolutionary Computation, pages 1–10, 1996.

[KIAK99] John R. Koza, Forrest H. Bennett II, David Andre, and Martin A. Keane.
Genetic Programming III: Darwinian Invention and Problem Solving. Morgan
Kaufmann Publishers, San Francisco, CA, 1999.

[KKS+03] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Mydlowec,
Jessen Yu, and Guido Lanza. Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic Publishers, Norwell, MA,
2003.

[Koz92] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, 1992.

[Ols95] R. Olsson. Inductive functional programming using incremental program trans-
formation. Artificial Intelligence, 74(1):55–81, 1995.

[Pol03] R. Poli. A simple but theoretically-motivated method to control bloat in ge-
netic programming. In Genetic Programming, Proceedings of the 6th European
Conference, pages 204–217, 2003.

[PSV04] J. Potvin, P. Soriano, and M. Vallee. Generating trading rules on the stock
markets with genetic programming. Computers and Operations Research,
31(1):1033–1047, 2004.

7


